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Abstract

The lifting problem for homogeneous ideals in a polynomial ring over a field is studied. A
division algorithm for H-bases is given. Using this division algorithm, a new method for finding
the liftings of a homogeneous ideal is developed. This method was compared with the current
methods. The results are demonstrated with examples.
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1 Introduction

Let A = K[x1, x2, . . . , xn−1] and B = K[x1, x2, . . . , xn−1, xn] where K is a field.

Definition 1.1. Let J be a homogeneous ideal in the polynomial ring A. A homogeneous ideal I
in B is called lifting of J if

(i) xn is not a zero divisor on B/I; and

(ii) J = 〈f(x1, x2, . . . , xn−1, 0) : f ∈ I〉.

The problem of finding the liftings of a given homogeneous ideal first suggested in [1] and fully
explained in [2]. Then this interesting problem has been investigated by many researchers (see
[3, 4, 5, 6]).

More recently a new computational method for finding the liftings of a given homogeneous ideal
is given [7]. This method involves some Gröbner basis computations. Here we will give only a
few definitions that are sufficient to explain the method given in [7]. We refer to [8] for a detailed
treatment of Gröbner bases.

For a given a monomial order < and a polynomial f in a polynomial ring, LT(f) denotes the
leading term of f with respect to <. If J is an ideal in this polynomial ring LT(J) = 〈LT(f) : f ∈ J〉
and NJ is the set of monomials which are not in LT(J).

Now we are ready to explain the method given in [7]. Starting with a homogeneous ideal
J = 〈f1, . . . , fs〉 ⊂ A compute a Gröbner basis {h1, . . . , ht} of J with respect to a given monomial
order < in A. After that define the polynomials

gi = hi +
∑

xαxn∈NJ
deg(xαxn)=deg(hi)

Ciαx
αxn

where xα = xα1
1 xα2

2 . . . xαnn .
The set of polynomials G = {g1, . . . , gt} is a Gröbner basis for the ideal I = 〈G〉 with respect

to a special extension of monomial order< into a monomial order in B if and only if I is a lifting
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of J . Buchberger’s criterion for Gröbner bases implies the remainders of S-polynomials S(gi, gj)
on division by G is zero for 1 ≤ i < j ≤ t. Hence equalizing the coefficients of remainders to
zero for each division gives us the conditions that the parameters must satisfy for I to be a lifting
of J . Theoretical background of this method depends on a reformulation of a theorem given [4]
in terms of Gröbner bases. In the original theorem however the lifting problem is related to the
H-bases not to the Gröbner bases. Therefore, this method is against to the nature of the problem.
It finds a Gröbner basis of a lifting which is not essential. Because of this, the method involves
many unnecessary computations.

The first attempt to use H-bases to solve the lifting problem was given in [6]. The authors gave
a criterion for H-bases in terms of syzygy modules which is very similar to Buchbergers criterion
for Gröbner bases. Because they could not use the division algorithm on H-bases, they were not
able to give a complete method for solving the lifting problem.

In this paper, we use the vector space character of homogeneous ideals to define a kind of division
on homogeneous polynomials. Combining the ideas given in [6] with this division algorithm, we
developed a new method for solving the lifting problem for homogeneous ideals. This method is
similar to the method given in [7] but it uses H-bases instead of Gröbner bases. Finally, we compare
these two methods and explain the advantages of our method.

2 H-bases

If f = fd + fd−1 + · · · + f1 + f0 where each fi ∈ B is a homogeneous polynomial of degree i and
fd 6= 0 , then H(f) = fd is called the leading form of f . For an ideal I of A, H(I) = 〈H(f) : f ∈ I〉.

Definition 2.1. A set of polynomials {f1, f2, . . . , fs} ⊂ B is an H-basis for the ideal I = 〈f1, f2, . . . , fs〉
provided that H(I) = 〈H(f1), H(f2), . . . ,H(fs)〉.

Let f = fd+fd−1 + · · ·+f1 +f0 be a polynomial in the polynomial ring A. The homogenization
of f with respect to xn is defined to be the polynomial fh = fd+xnfd−1 + · · ·+xd−1n f1 +xdnf0 ∈ B.
For an ideal I of A the homogenization of I, denoted by Ih, is the ideal Ih = 〈fh : f ∈ I〉 ⊆ B.

Let f be a homogeneous polynomial in B, then the dehomogenization of f is the polynomial
fa = f(x1, x2, . . . , xn−1, 1) ∈ A. For a homogeneous ideal I of B, the dehomogenization of I is the
ideal Ia = 〈fa : f ∈ I〉 ⊆ A.

Lemma 2.2. [4, Lemma 2.4] Let I be a homogeneous ideal of B. Then the following conditions
are equivalent.

(i) xn is not a zero divisor on B/I,

(ii) I = (Ia)h,

(iii) H(Ia) = I(x1, x2, . . . , xn−1, 0).

The next theorem gives a relation between the lifting problem and H-bases. A Gröbner basis
version of this theorem is used in [7].

Theorem 2.3. [4, Theorem 2.5] Let J = 〈f1, f2, . . . , fs〉 be a homogeneous ideal of A.

(i) Let gi = fi + Ri with deg(Ri) < deg(fi) for 1 ≤ i ≤ s and I = 〈g1, g2, . . . , gs〉 ⊆ A. If
{g1, g2, . . . , gs} is an H-basis for I, then Ih = 〈gh1 , gh2 , . . . , ghs 〉 is a lifting of J . Conversely,
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(ii) If I is a lifting of J , then there exist polynomials R1, R2, . . . , Rs ∈ A such that deg(Ri) <
deg(fi) for every i, {g1, g2, . . . , gs} is an H-basis and I = 〈gh1 , gh2 , . . . , ghs 〉.

This theorem is used in original form to find the liftings of a homogeneous ideal in[6]. We try
to explain their method but we need to define the syzygy module of a set of polynomials.

Definition 2.4. For an s-tuple of polynomials (f1, . . . , fs), the module generated by following set
of s-tuple of polynomials

{(h1, . . . , hs) : h1f1 + · · ·+ hsfs = 0}

is called syzygy module of (f1, . . . , fs) and denoted by syz(f1, . . . , fs).

The following theorem gives a criterion for a set of polynomials to be an H-basis. This criterion
is H-basis version of Buchberger’s criterion for a Gröbner basis.

Theorem 2.5. [6, Theorem 2.4] Let I = 〈h1, h2, . . . , ht〉 ⊆ K[x1, . . . , xn]. Let the columns of the
t× l matrix S = (sij) be a generating set of syz(H(h1), . . . ,H(ht)). We may assume further that
each sjifj is a homogeneous polynomial of same degree for j = 1, . . . , t. Then H = {h1, h2, . . . , ht}
is an H-basis for I if and only if

qi =

t∑
j=1

sjihj =

t∑
j=1

ajihj , 1 ≤ i ≤ l

for some aji ∈ K[x1, . . . , xn] such that deg(qi) = max{deg(ajihj), j = 1, . . . , t}.

The following method for finding the liftings of a homogeneous ideal is proposed in [6]: Given
an ideal J = 〈f1, . . . , fr〉 ⊆ K[x1, . . . , xn] where fi’s are homogeneous, define

gi =
∑

deg(xγ)<deg(fi)

Ciγx
γ , hi = fi + gi.

Furthermore, for each qi in Theorem 2.5 define

aji =
∑

deg(xγ)<deg(qi)−deg(hj)

Diγx
γ .

Then compare the coefficient of monomials of the equation given Theorem 2.5 to find relations
among the parameters Ciγ ’s and Dijγ ’s. Then I = 〈h1, h2, . . . , hr〉 is an element of the liftings of J
if and only if the coefficients of hi’s satisfy these relations. This is not a convenient method because
there are extra parameters Dijγ ’s. Even though in their example they are able to solve these extra
parameters in terms of Ciγ ’s, there is no guarantee that this will always occur.

The effectiveness of the method proposed in [7] comes from the usage of the division algorithm.
This is the weak part of the method in [6]. Because of this we define a division process for H-bases.
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3 A division algorithm for H-bases

Let Pd be the vector space of homogeneous polynomials of degree d in variables x1, x2, . . . , xn over
a field K. For brevity we denote the monomial xα1

1 xα2
2 . . . x

αn−1

n−1 x
αn
n by xα. It is well-known that

B = {xα : deg(xα) = α1 + α2 + . . .+ αn = d}

is a basis for Pd.
Let I = 〈f1, f2, . . . , fs〉 ⊆ K[x1, x2, . . . , xn] where fi’s are homogeneous polynomials. Vd(I) =

{f ∈ I : deg(f) = d or f = 0} is a subspace of Pd. Furthermore, the polynomials of the form
xα1
1 . . . xαnn fi where deg(xα) + deg(fi) = d spans Vd(I).

For a given homogeneous polynomial f ∈ K[x1, x2, . . . , xn] of degree d, f ∈ I if and only if
f ∈ Vd(I). We can decide whether f ∈ Vd(I) or not as follows:

Let f =
∑

deg(xα)=d

aix
α where ai ∈ K. We have to find cβj ’s in K such that

f =
∑

deg(xβ)+deg(fj)=d

cβjx
βfj .

This is just a system of linear equations and can be solved linear algebra techniques. Construct
the matrix M whose columns are coordinate vectors of xβfj ’s with respect to B. Also the last

column of M is the coordinate vector of f with respect to B. If M
′

is the row reduced echelon form
of M , then these matrices will give the solution of same system since they are row equivalent. If
M
′

has any row like (0, 0, . . . , 0, L(a1, a2, . . .)) where L is a linear function, then the system has no
solution unless L(a1, a2, . . .) = 0. Such rows will give relations between ai’s for f to be in Vd(I).

Example 3.1. Consider the homogeneous ideal

I = 〈f1, f2, f3〉 = 〈x21 + x1x3, x1x2 + x2x3, x
3
1 + x1x

2
2 + x22x3〉

and the polynomial

g = a1x
3
1 + a2x

2
1x2 + a4x1x

2
2 + a7x

3
2 + a3x

2
1x3 + a5x1x2x3 + a8x

2
2x3 + a6x1x

2
3 + a9x2x

2
3 + a10x

3
3

of degree 3. We try to obtain the equations that ai’s must satisfy for the polynomial g to be in
V3(I).

Clearly, {x1f1, x2f1, x3f1, x1f2, x2f2, x3f2, f3} is a spanning set for the vector space V3(I). Con-
sider the augmented matrix M ,

x1f1 x2f1 x3f1 x1f2 x2f2 x3f2 f3 g
x31 1 0 0 0 0 0 1 a1
x21x2 0 1 0 1 0 0 0 a2
x21x3 1 0 1 0 0 0 0 a3
x1x

2
2 0 0 0 0 1 0 1 a4

x1x2x3 0 1 0 1 0 1 0 a5
x1x

2
3 0 0 1 0 0 0 0 a6

x32 0 0 0 0 0 0 0 a7
x22x3 0 0 0 0 1 0 1 a8
x2x

2
3 0 0 0 0 0 1 0 a9

x32 0 0 0 0 0 0 0 a10
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After applying a series of elementary row operations, the row reduced echelon form of M , say
M
′
, will be

x1f1 x2f1 x3f1 x1f2 x2f2 x3f2 f3 g
x31 1 0 0 0 0 0 0 −a6 + a3
x21x2 0 1 0 1 0 0 0 a2
x21x3 0 0 1 0 0 0 0 a6
x1x

2
2 0 0 0 0 1 0 0 a4 − a6 + a3 − a1

x1x2x3 0 0 0 0 0 1 0 a5 − a2
x1x

2
3 0 0 0 0 0 0 1 a6 − a3 + a1

x32 0 0 0 0 0 0 0 a7
x22x3 0 0 0 0 0 0 0 a8 − a4
x2x

2
3 0 0 0 0 0 0 0 a9 − a5 + a2

x32 0 0 0 0 0 0 0 a10

Hence, from the last 4 rows of M
′
, g ∈ V3(I) if and only if

a7 = 0

a4 = a8

a9 = a5 − a2
a10 = 0

Under these conditions,
g = [(−a6 + a3)x1 + a2x2 + a6x3]f1 + [(a4− a6 + a3− a1)x2 + (a5− a2)x3]f2 + (a6− a3 + a1)f3.

Now we are ready to define a new division process.

Definition 3.2. Let H = {f1, f2, . . . , fs} ⊆ K[x1, . . . , xn]. For f ∈ K[x1, . . . , xn] we say f reduces

to f̃ modulo H, written
f −→H f̃ , if

f̃ = f − (a1f1 + · · ·+ asfs)

for some homogeneous polynomials a1, . . . , as satisfying

H(f) = a1H(f1) + · · ·+ asH(fs)

and deg(ai) = deg(f)− deg(fi).

We say f completely reduce to r, written f −→+
H r, if there exists a sequence of polynomials

g1, . . . , gt such that
f →H g1 →H g2 →H · · · →H gt →H r

and no homogeneous part of r is in 〈H(f1), . . . ,H(fs)〉.

Lemma 3.3. Let H = {f1, f2, . . . , fs} ⊆ K[x1, . . . , xn]. For every f ∈ K[x1, . . . , xn], there exists
r ∈ K[x1, . . . , xn] such that f −→+

H r.
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Proof. The desired polynomial r can be found using the following algorithm.

h := f, r := 0

WHILE h 6= 0 DO

IF H(h) ∈ 〈H(f1), . . . ,H(fs)〉 THEN

h := h̃ where h −→H h̃

ELSE

h := h−H(h)

r := r +H(h)
q.e.d.

Let us illustrate the algorithm with an example.

Example 3.4. Let H = {f1, f2} = {x31 + x2x3, x1x2 + x3} and f = x31 + x1x
2
2 + x2x3 + x21 + x3.

We will apply the algorithm to find the polynomial r.

• Here h = f and r = 0. Using technique given in Example 3.1,

H(h) = x31 + x1x
2
2 = H(f1) + x2H(f2).

So, h = h̃ = h− f1 − x2f2 = x21 − x2x3 + x3.

• Since H(h) = x21 − x2x3 /∈ 〈H(f1), H(f2)〉,

h = h−H(h) = x3

and
r = 0 +H(h) = x21 − x2x3.

• Now, h 6= 0 and H(h) = x3 /∈ 〈H(f1), H(f2)〉. So,

h = h−H(h) = 0

and
r = r +H(h) = x21 − x2x3 + x3.

Since h = 0, the algorithm ends with r = x21 − x2x3 + x3. Therefore, f −→+
H x

2
1 − x2x3 + x3.
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4 New method

The following results give some relations between H-bases and the division algorithm defined on
the previous section.

Lemma 4.1. Let H = {f1, f2, . . . , fs} ⊆ K[x1, . . . , xn] and I = 〈H〉. H is an H-basis for I if and
only if for every f ∈ I, f −→+

H 0.

Proof. Suppose that H = {f1, f2, . . . , fs} is an H-basis for I = 〈H〉 and f ∈ I. Then there exist
homogeneous polynomials a1, . . . , as ∈ K[x1, . . . , xn] satisfying deg(ai) = deg(f) − deg(fi) such
that H(f) = a1H(f1)+ · · ·+asH(fs). Notice that these polynomials can be obtained by the simple

linear algebra techniques. Now define f̃ = f − (a1f1 + · · · + asfs). So, f −→H f̃ . It is clear that

deg(f̃) < deg(f) and f̃ ∈ I. Hence we can apply same process to the polynomial f̃ and continue
doing this until we reach to zero polynomial.

Conversely, suppose that f ∈ I and f −→+
H 0. Then there exists a sequence of polynomials

g1, . . . , gt such that
f →H g1 →H g2 →H · · · →H gt →H 0.

Since f →H g1, there exist homogeneous polynomials b1, . . . , bs such that H(f) = b1H(f1) +
· · · + bsH(fs) which implies that H(f) ∈ 〈H(f1), . . . ,H(fs)〉. Hence H(I) = 〈H(f1), . . . ,H(fs)〉,
that means H = {f1, f2, . . . , fs} is an H-basis.

q.e.d.

Lemma 4.2. Let H = {f1, f2, . . . , fs} ⊆ K[x1, . . . , xn] and I = 〈H〉. For every f ∈ I, f −→+
H 0 if

and only if there exist polynomials a1, . . . , as ∈ K[x1, . . . , xn] such that f = a1f1 + · · ·+ asfs and
deg(f) = max

1≤i≤s
{deg(aifi)}.

Proof. Suppose that for every f ∈ I there exist polynomials a1, . . . , as ∈ K[x1, . . . , xn] such that
f = a1f1 + · · ·+ asfs and deg(f) = max

1≤i≤s
{deg(aifi)}. Then

H(f) =
∑

deg(f)=deg(aifi)

H(ai)H(fi).

H(I) = 〈H(f1), . . . ,H(fs)〉 means that H = {f1, f2, . . . , fs} is an H-basis. Hence f −→+
H 0 by

above lemma.
Suppose that f ∈ I and f −→+

H 0. Then

f = g0 →H g1 →H g2 →H · · · →H gt = 0

for some polynomials g1, . . . , gt ∈ K[x1, . . . , xn]. If

H(gi−1) =

s∑
j=1

aijH(fj)

for i = 1, . . . , t, then

f =

s∑
j=1

t∑
i=1

aijfj .

q.e.d.
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Using above lemmas, we can rewrite Theorem 2.5 with the new notation.

Theorem 4.3. Let I = 〈h1, h2, . . . , ht〉 ⊆ K[x1, . . . , xn]. Let the columns of the t × l matrix
S = (sij) be a generating set of syz(H(h1), . . . ,H(ht)). We may assume further that each sjifj is
a homogeneous polynomial of same degree for j = 1, . . . , t. Then H = {h1, . . . , ht} is an H-basis
for I if and only if

qi =

t∑
j=1

sjihj −→+
H 0, 1 ≤ i ≤ l.

Now we are ready to explain the new method for findings of the liftings of a given homogeneous
ideal J = 〈f1, . . . , fs〉 ⊂ A. First of all, we need to find a generating set for syz(f1, , fs). Secondly,
we define the polynomials

gi = fi +
∑

deg(xγ)<def(fi

Ciγx
γ 1 ≤ i ≤ s.

Then for each syzygy (t1, . . . , ts) in the generating set of syz(f1, , fs) define the polynomial
qt = t1g1 + · · · + tsgs. Theorem 4.3 implies (H) = {g1, . . . , gs} is an H-basis, in other words
I = 〈(H)〉 is a lifting for J , if and only if every qt −→+

H 0. Therefore when applying the division
algorithm, described in Lemma 3.3, to each qt the conditions that the parameters Ciγ ’s must satisfy
for I to be a lifting of J can be obtained.

Let us illustrate the method with an example.

Example 4.4. Condider the ideal J = 〈f1, f2, f3〉 = 〈x21, x1x2, x42 +x1x
3
3〉. Define the polynomials:

g1 = f1 + C1x1 + C2x2 + C3x3 + C4,

g2 = f2 + C5x1 + C6x2 + C7x4 + C8 and

g3 = f3 + C9x
3
1 + C10x

2
1x2 + C11x

2
1x3 + C12x1x

2
2 + C13x1x2x3 + C14x1x

2
3 + C15x

3
2 + C16x

2
2x3 +

C17x2x
2
3+C18x

3
3+C19x

2
1+C20x1x2+C21x1x3+C22x

2
2+C23x2x3+C24x

2
3+C25x1+C26x2+C27x3+C28.

The syzygy module syz(f1, f2, f3) can be generated t1 = (x2,−x1, 0), t2 = (0, f3,−f2) and
t3 = (x33, x

3
2,−x1). The details of computation of generators of syzygy modules can be found in [9].

Then we define polynomials:

q1 = x2g1 − x1g2 = −C5x
2
1 + (C1 − C6)x1x2 + C2x

2
2 − C7x1x3 + C3x2x3 − C8x1 + C4x2, q2 =

f3g2 − f2g3 and q3 = x33g1 + x23g2 − x1g3.
The ideal I = 〈g1, g2, g3〉 is a lifting of J if and only if q1 −→+

H 0 for i = 1, 2, 3. Let us apply
division algorithm to q1.

H(q1) = −C5x
2
1 + (C1 − C6)x1x2 + C2x

2
2 − C7x1x3 + C3x2x3.

Using the technique given in Example 3.1, H(q1) = −C5f1 + (C1 − C6)f2 under the condition
C2 = C3 = C7 = 0.

Let

q̃1 = q1 + C5g1 − (C1 − C6)g2 = (C5C6 − C8)x1 + (C4 − C1C6 + C2
6 )x2 + C4C5 − C1C8 + C6C8.
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This a polynomial of degree 1, so it goes to the remainder. Since the remainder should be zero, the
equations C8 = C5C6 and C4 = C1C6 − C2

6 are obtained.
Applying same process to q2 produce the following equations:

C6 = C1 − C18,

C24 = C5C17 + C14C18,

C27 = −C2
5C16 − C5C13C18 − C11C

2
18 + C18C21 + C5C23 and

C28 = −C4
5 +C3

5C15 +C2
5C12C18 +C5C10C

2
18 +C9C

3
18−C2

18C19−C5C18C20−C2
5C22 +C18C25 +

C5C26

Replacing C6 = C1 − C18 into equations C8 = C5C6 and C4 = C1C6 − C2
6 , we also get

C4 = C1C18 − C2
18 and C8 = C1C5 − C5C18.

The division of q3 does not produce additional equations. Hence I = 〈g1, g2, g3〉 is a lifting of J
if

g1 = x21 + C1x1 + C1C18 − C2
18,

g2 = x1x2 + C5x1 + (C1 − C18)x2 + C1C5 − C5C18 and

g3 = x42 + x1x
3
3 + C9x

3
1 + C11x

2
1x3 + C23x2x3 + C13x1x2x3 + C16x

2
2x3 + (C5C17 + C14C18)x23 +

C14x1x
2
3 + C17x2x

2
3 + C18x

3
3 + C19x

2
1 + C10x

2
1x2 + C22x

2
2 + C12x1x

2
2 + C15x

3
2 + C25x1 + C26x2 +(

−C2
5C16 − C5C13C18 − C11C

2
18 + C18C21 + C5C23

)
x3 − C4

5 + C3
5C15 + C2

5C12C18 + C5C10C
2
18 +

C9C
3
18 − C2

18C19 − C5C18C20 − C2
5C22 + C18C25 + C5C26.

Starting with a generating set for the homogeneous ideal J , the one need to add new polynomials
to the generating set unless the original set is a Gröbner basis in the method suggested in [7]. This
is the most important handicap of that method. In our method however we always use the given
generating set of the ideal J . On the other hand, our method requires a generating set for the syzygy
module. The best-known method for computation of a syzygy module uses Gröbner bases (see [9]).
Even if the Gröbner basis of J is computed for finding a syzygy module, many S-polynomials do not
produce a syzygy for J at the end. Hence the number of syzygies to be considered in our method is
generally much less than the number of S-polynomials to be considered in the method given in[7].
Furthermore, we may only need a Gröbner basis for J not for I which contains polynomials with
many parameters. The Gröbner basis computation with parameters might be very complicated.
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